JetBot: An Autonomous Vehicle for Minicity

GALLOGLY COLLEGE OF ENGINEERING SCHOOL OF COMPUTER SCIENCE The UNIVERSITY of OKLAHOMA

1. Introduction

The culmination of our final project endeavors to harness the power of machine learning and computer vision to empower a JetBot in navigating a MiniCity course. Situated amidst this simulated urban environment lies a gas station flanked by two distinct lanes, with a dotted white line demarcating their boundary.

Our approach centered on the construction of a comprehensive and diverse dataset, laying the foundation for our exploration. To identify the optimal architecture for this task, we conducted a thorough evaluation of several pre-built models available in PyTorch. Our analysis includes the renowned ResNet18 model, alongside the MobileNet and GoogleNet models.

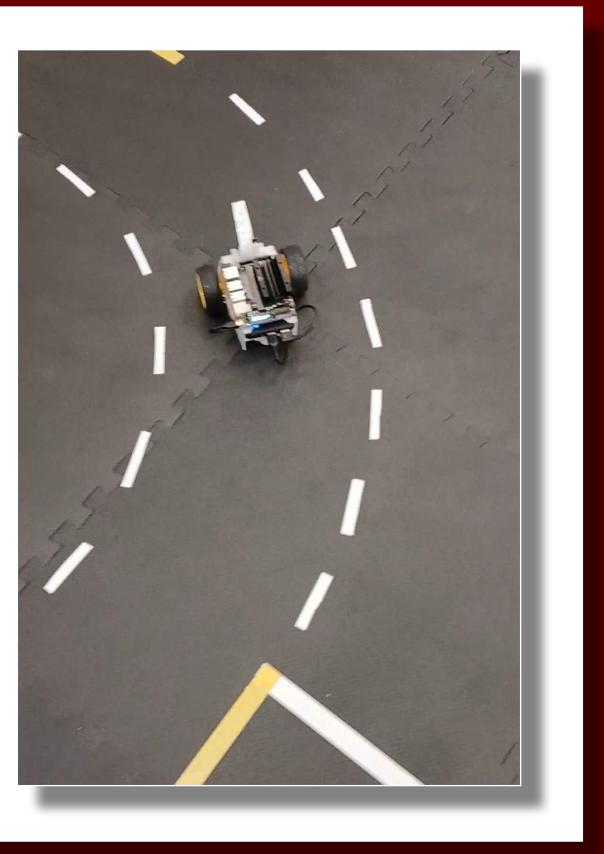
3.TensorRT Model MODEL REPOSITORY (Persistent Volume) nference Response Framework **NVIDIA** TensorRT Inference Server

2. Software Setup

- Download Pre-built Image: Obtain the JetBot SD card image corresponding to your Jetson Nano model from the provided table.
- Flash Image onto SD Card: Use Etcher to flash the downloaded image onto the SD card inserted into your desktop machine.
- Boot Jetson Nano: Insert the flashed SD card into your Jetson Nano, connect peripherals, and power it on.
- Connect to WiFi: Log in to the Jetson Nano using the provided credentials, then connect to a WiFi network via the command line.
- Access JetBot Interface: Once connected to WiFi, shut down the JetBot, unplug peripherals, power it via a USB battery pack, and access the JetBot interface from your laptop's web browser.
- Sign In and Begin: Sign in to the JetBot interface using the provided password, enabling seamless control and interaction.

https://github.com/subhashchandra001/ou-ai-sp24

Subhash Chandra, Vagif Mammadzada


Data Collection:

- Connect to JetBot via http://<jetbot_ip_address>:8888.
- Sign in with default password.
- Navigate to ~/Notebooks/road_following/ and open data_collection.ipynb to collect image regression dataset.

Neural Network Training:

- Option 1 Train on Jetson Nano:
 - Connect to JetBot via http://<jetbot_ip_address>:8888.
 - Sign in and navigate to ~/Notebooks/road_following/.
 - Open train_model.ipynb and follow instructions.
- Option 2 Train on Other GPU Machine:
 - Connect to GPU machine with PyTorch and Jupyter Lab.
 - Upload road following avoidance training notebook.
 - Open train_model.ipynb and proceed with training.

5. Livo Dem	0
speed gain	0.34
steering gain -	0.11
steering kd	0.00
steering bias	0.00
y speed y speed 0.23 0.34 x	-0.25 -0.09

3. Data Collection and Training

Model Optimization on Jetson Nano:

- Connect to JetBot via https://<jetbot_ip_address>:8888.
- Sign in and navigate to ~/Notebooks/road_following/.
- Open live_demo_build_trt.ipynb and optimize model with TensorRT.

Live Demo on JetBot:

- Connect to JetBot via http://<jetbot_ip_address>:8888.
- Sign in and navigate to ~/Notebooks/road_following/.
- Open live_demo_trt.ipynb to run the optimized model and demonstrate live performance.

6. Future Work

- Expand training data to include more diverse scenarios and environments
- Varied lighting conditions (low light, glare, shadows)
- Different road surfaces (gravel, dirt, uneven terrain)
- Obstacles and dynamic objects (pedestrians, animals, moving vehicles) • Enhance perception capabilities
- Integrate additional sensors (LIDAR, radar) for better object detection and mapping
- Improve object classification and tracking algorithms
- Develop advanced navigation and control strategies
- Implement path planning and obstacle avoidance algorithms
- Explore reinforcement learning techniques for autonomous navigation
- Conduct extensive real-world testing and validation
- Test on actual roads and highways with varying traffic conditions
- Evaluate performance in different weather conditions (rain, snow, fog)
- Assess safety and robustness in edge cases and failure modes
- Collaborate with industry partners and research institutions
- Leverage expertise and resources from automotive and technology companies
- Participate in autonomous vehicle competitions and challenges
- Explore ethical considerations and societal impacts
- Develop guidelines and frameworks for safe and responsible AI systems
- Study the potential effects on transportation, urban planning, and society